Perspectives on Zoonotic Diseases

Dave Van Metre, DVM, DACVIM
College of Veterinary Medicine & Biomedical Sciences
Colorado State University
Objectives

Why are zoonotic diseases of greatest consequence today?

Risk factors

Benefits of animals

Preventative measures

What roles can we play in educating the public?
What is a zoonotic disease?

A disease shared by humans and vertebrate animals
There are 1,407 known human disease pathogens of which 816 are zoonotic diseases.
75% of human emerging infectious diseases are caused by zoonotic pathogens

J Emerging & Infectious Diseases vol 11, 2005
Transmission of Zoonotic Disease
Who is at risk?

Veterinarians & veterinary technicians
Animal Emergency Responders
General Public When Visiting:
 Petting zoos
 Dog parks
 Animal Shelters
Pet owners
 New pet
 Outdoor cat
 Reptiles and birds
Animal shelter personnel
Animal control officers
Pet retail facility personnel
Livestock producers
4-H program participants
Salebarn personnel
Society has changed!

• More people have contact with animals today than they did a century ago!
• Early 19th century: 40% of the population were involved with agriculture
• Today <2% are involved with agriculture, but…
60% households have at least one kind of pet -
An ever growing diversity of pets
A disease shared by humans and animals
Marshfield index case, 5/26/03
disseminated lesions
Wisconsin 2003
7 confirmed
34 suspect human cases
Monkeypox Virus

- Orthopox family
- Spread animal-to-human via blood or bite
- Human-to-human spread possible
- Clinical presentation similar to smallpox but milder
Smallpox
What are the risks for acquiring a zoonotic disease in Colorado?
Some Behaviors Are Clearly Risky
Those at greatest risk

- Children less than 5 years old.
- Elderly.
- Pregnant women.
- People undergoing treatments for cancer.
- People who have received organ transplants.
- People with HIV/AIDS.
Risk Recognition

Sick outdoor / hunter cat

High fever, depression
Lymph node enlargement or abscess
(+/-) respiratory signs
Plague

- *Yersinia pestis* gram(-), non-motile, non-spore forming bacillus

- Fleas living on infected rodents spread infection to humans, cats, deer, rabbits

- Recovery offers temporary immunity
Endemic Plague in the US

Counties with Plague-Positive Samples

1970 - 1994
Common reservoirs of *Yersinia pestis*
Aerosol
Bubonic or Septicemic Plague
Oropharyngeal & Secondary pneumonia
Pneumonia
Contact
Aerosol
Bubonic Plague

Photographs: Ken Gage, Ph.D., Centers for Disease Control and Prevention, Fort Collins, CO
Plague in cats

- Lymphadenopathy – ‘Bubonic’ 53%
 Mandibular area abscesses
- Septicemic
- Pneumonic
 Most dangerous to people
- Dogs frequently infected
 but are rarely clinical
Tularemia

- Gram Negative bacillus: *Francisella tularensis*
- One of the most infectious bacteria known
 - 10 or fewer bacteria will result in infection
Transmission

• **Direct contact**
 – Skinning infected animals

• **Ingestion**
 – Infected tissues
 – Water
 – Voles (*Microtus* spp)

• **Inhalation**

• **Vectors**
 – **HARD TICKS**
 • Human transmission
 • *Dermacentor variabilis*
 – **BITING FLIES**
 • *Chrysops*
 • *Tabanus*
 • Mechanical transmission
 • Infective for 14 days
Clinical presentations

Ulceroglandular (75-85%)
Ulcer and regional lymph node enlargement

Glandular (5-10%)

Oculoglandular
Conjunctivitis, cervical lymphadenopathy
Tularemia

Flu-like illness with fever, headache, generalized body aches and productive or non-productive cough

Pneumonia (85%)
pleural effusion (15%)

• Untreated case-fatality rate - 35-60%
• Culture diagnosis quite difficult
• Person-to-person spread not seen
Kosovo

- Nov 2001 – Feb 2002
 - 715 human cases
 - Ages 16-44
- Oropharyngeal form
 - Rodent contamination of food and water
CRYPTOSPORIDIOSIS. Incidence* — United States and U.S. territories, 2003

* Per 100,000 population.

MMWR 2:2005
Cryptosporidium parvum

- Most common causes of waterborne disease within humans in the United States.
- Serological surveys indicate that 80% of the population has had cryptosporidiosis.
- Incubation period 2-10 days
Cryptosporidiosis

Etiology
- *Cryptosporidium parvum*

Transmission
- Fecal-oral
- Human to human
- Animal to human
- Food borne
- Waterborne

Most common outbreak source:
- Failures in solid waste management

Reservoirs
- Human
- Livestock
- Birds
Cryptosporidial genotypes

GENOTYPE I

Human-human transmission only
Not infective for cattle
Isolated from major human outbreaks

GENOTYPE II

Animal-animal and animal-human transmission (zoonotic)
Associated with animal waste contact
Human Cryptosporidiosis

Incubation: 1-12 days
Self-limiting in immunocompetent
Nausea and abdominal pain
Watery diarrhea: 3-4 days duration
Immunosuppressed patients
 Persistent diarrhea
 Persistent shedding
 10-20% of AIDS patients affected
Human outbreaks

Solid Waste Failures

Georgia, 1987
- 13,000 people affected

Milwaukee, WI, 1993
- 403,000 people affected
- Dairy farms along 2 rivers upstream

Austin, TX, 1998
- 150 people affected
- 170,000 gallons of raw sewage into local creek
Human outbreaks

Public Water Parks & Swimming Pools
- Georgia, 1995
- Louisiana 1988
- Wisconsin 1993

Food Service Related
- Georgia Day Care, 1995
 - Food worker shedding oocysts
- Spokane WA Banquet, December 1997
 - Infected food service workers: Green onions
Control and prevention

Personal hygiene
Public education
Isolation of affected people from food handling or child care jobs
Proper fecal waste management
Q Fever

Coxiella burnettii

One organism may cause infection

Often symptomatic in animals

Rare cause of abortion in sheep & goats

Inhalation most common way to get infected

 Obstetrical assistance to sheep or goats

Unpasteurized milk, soft cheeses
Q Fever in Humans

In untreated patients, case fatality rate is 1%;
- death is rare in treated patients

Fever accompanied by chills, headache, weakness

About half of patients present with pneumonia

No person-to-person transmission

Chronic form (65% mortality)
(Valvular endocarditis)

Heart disease
Three step-process

1. Prevention
 • Vaccination, parasite control
 • Basic biosecurity
Three steps (continued)

2. Appropriate sanitation / hygiene practices
 - Cleaning and disinfecting animal areas as needed
 - Hand washing!
 - Don’t eat or drink in animal facilities

3. Early diagnosis and treatment
 - Both people and animals!
 Tell your doctor that you work with animals!
Animals are important part of our culture

- Agriculture
- Companions
- Service and working animals
- Wildlife

Benefits of contact with animals outweigh the risks!
Rocky Mountain Regional Center of Excellence
For Biodefense & Emerging Infectious Diseases